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ABSTRACT
The rapid development of carbon capture technology speeds up
its industrialization and wide application with the help of massive
investment. In addition to the capital market, such investment may
also come from a well-designed carbon market. This paper pro-
poses a green certificate auction to maximize the auction revenue
for enabling the carbon capture technology. Besides political and
regulatory requirements, the goodwill from contributing to carbon
neutrality may also incentivize the generating companies to par-
ticipate. The auction design is challenging as it associates with the
economic dispatch procedure in the electricity market. Using the
notion of virtual demand, we decouple the auction from economic
dispatch, and we prove that our designed auction enjoys optimal-
ity, truthfulness, and individual rationality. We also show that our
auction can be extended to the multi-period scenario, highlighting
the impact of leftover certificates. We further provide an upper
bound for sample complexity when the willingness of participants
cannot be well-identified. Numerical studies verify the effectiveness
of the proposed auction and the tightness of the derived sample
complexity bound.
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1 INTRODUCTION
Global warming is here [1]. The Paris Agreement [2] calls for greater
worldwide efforts to combat global warming by reducing carbon
emissions. It is recently reckoned by the United Nations Intergov-
ernmental Panel on Climate Change (PCC) that the global carbon
emissions must be reduced by 50% by year 2030 to limit warning to
1.5 ◦C and avoid catastrophic climate consequences [3]. To achieve
this goal, carbon tax and cap-and-trade programs are ready in many
countries for the large-scale implementation. However, such poli-
cies often make the regions with them in a non-favorable position
in the global economy. More importantly, the public often chal-
lenges the actual usage of the extra payment collected from these
carbon-related policies [4]. Thanks to the successful commercial-
ization of carbon capture technologies [5], one potential solution
to align the interests between the public and the policymakers is to
invest the extra payment in carbon capture technologies. Regard-
ing this analysis, our work designs the green certificate auction to
maximize the revenue for the auctioneer (i.e., the system operator
in the power grid).

Specifically, we consider the green certificate auction design
coupled with economic dispatch (ED), a classic procedure in the
electricity sector to dispatch the generators to meet the real-time
demand. The designed auction determines the social allocations of
green certificates, which grants the generating companies certain
advantages in the ED process. Such coupling complicates the auc-
tion design. In this paper, we propose the notion of virtual demand
to decouple the auction from ED.

1.1 Related Works
We identify two closely related research streams. The first one
investigates the applications of financial instruments to the car-
bon market, while the other one is the theoretical treatment for
homogeneous divisible-good’s auctions.

Various financial instruments have been implemented in the
carbon-related markets, e.g., auction, grandfathering, uniform or
discriminatory pricing [6]. We focus on the auction design, the
most popular form among its rivals [7]. Both sealed and dynamic
auctions have been adopted to allocate green certificates [8]. For
example, Betz et al. [9] propose an ascending clock auction to im-
prove the efficiency of the green certificate market. Wang et al. [10]
employ the sequential ascending auction and prove its convergence
to the Pareto optimal equilibrium. Rao et al. [11] study the uniform
price sealed auction and show the existence of an asymmetric Nash
Equilibrium. Sun et al. [6] generalize the setting by considering the
multi-buyer and multi-seller scenario and design a double action
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for green certificate allocation. Ding et al. [12] consider the influ-
ence of the interactions between the energy consumption market
and the certificate auction market and design a two-stage auction-
bargaining model. Wang et al. [13] design the multi-unit auction
in the Bayesian framework. Overall, the literature rarely treats the
problem as a divisible-good auction and seldom involves rigorous
modeling of the whole dispatch process. Furthermore, the literature
often designs the market for the policymaker instead of the system
operator in the electricity sector. We seek to bridge the gap by
rigorously designing the green certificate auction embedding the
ED process for the system operator.

We cast the green certificate auction in the homogeneous divisible-
good auction design framework since the green certificates are
homogeneous. Such an auction is often organized in two ways. The
first approach is to discretize the quantity space to a countable num-
ber [14]. However, the effective auction design is a long-standing
open problem when the number of pieces resulting from the divi-
sion is too large. The second approach pioneered by Wilson [15]
designs effective bidding in a stylized model. This classical work
applies to the auction of divisible goods [16, 17], ignorance of the
difference between uniform and discriminatory auction. Back et
al. [18] further show that discriminatory auction yields more rev-
enue in divisible-good auction. Recently, Lu et al. [19] design the
divisible unit good auction with budget constraints. Johari et al.
[20] propose a scalar strategy for Vickrey-Clarke-Groves (SSVCG)
mechanism and introduce an efficient algorithm to characterize
the Nash Equilibrium. However, most of these works assume the
knowledge of the bidders’ value distributions. Sample complexity
[21] is proposed to relax this strong assumption. Both Dhangwat-
nota et al. [22] and Cole et al. [23] study the sample complexity
for digital goods with an unlimited supply. In this work, we first
follow the classical framework proposed by Maskin et al. [16] and
then use the notion of sample complexity to infer the generating
companies’ valuation with a limited supply of green certificates.

1.2 Our Contributions
Based on the literature review, we mainly solve two challenges
in this paper. First, it is rather challenging to combine an auction
with another optimization problem, as we need to consider a multi-
object problem for the auction, where the auction outcomes will
influence the other optimization. Furthermore, we need to guaran-
tee incentive compatibility, individual rationality, and optimality in
this special auction problem. We expensively extend the tradition
multi-demand auction framework in [24] to our problem, by ana-
lyzing the monotonicity characteristics in our problem, which are
never studied in this setting. The second challenge is how to iden-
tify the sample complexity in this multi-demand auction problem.
Conventionally, the sample complexity is discussed in the single
item auction [25] and non-linear pricing with infinite supply [23].
We are the first to study sample complexity in this problem. This is
no easy task. It is challenging to characterize the bound for sample
complexity due to the coupling in this multi-demand auction. We
propose an auxiliary mechanism to derive an effective bound.

Overall, our principal contributions are as follows:

(1) Virtual Demand: We study the interdependency between the
green certificate auction and the ED process. Inspired by the

Goal: optimal auction design embedding ED process

Virtual demand design
(Section 3)

ED process decoupling
(Section 3)
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Numerical performance evaluation in single and multiple periods (Section 6)

Put the framework
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Figure 1: The structural paradigm of our paper

notion of virtual value [26], we propose a new concept-the
virtual demand-to decouple the interdependency.

(2) Theoretical Insights: Our designed auction in the Bayesian
framework is both truthful and individually rational. We
further investigate the impact of incorporating capacity con-
straints (to be explained in detail in Section 4) into our auc-
tion design, yielding the insights for both competitive and
non-competitive scenarios.

(3) Sample Complexity: We construct an upper bound for the
number of samples needed to estimate the value of bidders
accurately. This bound informs us when the auction design
can achieve guaranteed performance.

The rest of the paper is organized as follows. We first formulate
the green certificate auction design problem in Section 2, which
is the basis for our designed auction in a constraint-free setting.
We theoretically prove the effectiveness of our design in Section
3 and then extend it with capacity constraints in Section 4. We
conduct a sample complexity analysis to relieve the assumption
on the knowledge of bidder value distribution in Section 5. After
that, numerical studies in Section 6 are conducted to verify our
conclusions, followed by concluding remarks in Section 7. Fig. 1
illustrates the structural paradigm of our paper.

2 AUCTION FORMULATION
We consider the optimal multi-unit auction for the green certifi-
cates, assuming the green certificates are divisible, with a total
amount of 𝑄 . The bidders in the auction are the generating com-
panies, whereas the auctioneer is the system operator. Denote the
total number of bidders by 𝑁 and the type of generator 𝑖 by 𝑣𝑖 .
This value information characterizes the company’s willingness to
hold the certificates. The potential benefit may come from future
trading, goodwill, or other side rewards beyond this mechanism.
Specifically, denote the auction outcome for generator 𝑖 by variable
𝑥𝑖 . We focus on studying the uniform demand price function, i.e.,
the price 𝑟 (𝑥𝑖 , 𝑣𝑖 ) is fully characterized by the auction outcome 𝑥𝑖
and type 𝑣𝑖 . Note that the integral of 𝑟 (𝑥𝑖 , 𝑣𝑖 ) with respect to 𝑥𝑖 de-
scribes the valuation for generator 𝑖 . Mathematically, if the realized
auction outcome for generator 𝑖 (green certificate purchased by the
generator through the auction) is 𝑞𝑖 , then its valuation Ψ(𝑞𝑖 , 𝑣𝑖 ) is
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determined as follows:

Ψ(𝑞𝑖 , 𝑣𝑖 ) =
∫ 𝑞𝑖

0
𝑟 (𝑥, 𝑣𝑖 )𝑑𝑥 . (1)

We further assume the type information 𝑣𝑖 is a random variable,
drawn from the Cumulative Probability Function (cdf) 𝐹𝑖 (𝑣) with
a support of [𝑣𝑖 , 𝑣𝑖 ]. Denote its corresponding Probability Density
Function (pdf) by 𝑓𝑖 .

To simplify the optimal auction design, we make the following
technical assumptions:

• A1: All the value distributions of bidders are regular. That is,
for each generator 𝑖 , the virtual valuation function 𝐽𝑖 (𝑣) = 𝑣−
𝜌𝑖 (𝑣)−1 is increasing. Note that 𝜌𝑖 (𝑣) represents the hazard
rate for the bidder 𝑖:

𝜌𝑖 (𝑣) =
𝑓𝑖 (𝑣)

1 − 𝐹𝑖 (𝑣)
. (2)

• A2: For each type 𝑣 , 𝑟 (𝑥, 𝑣) is finite and positive, twice con-
tinuously differentiable, strictly decreasing in 𝑥 , and strictly
increasing in 𝑣 .

• A3: The elasticity of the demand price function is non-
decreasing, i.e.,

𝜕

𝜕𝑣

(
−𝑥
𝑟

𝜕𝑟

𝜕𝑥

)
≤ 0. (3)

• A4: The demand price function is concave in 𝑣 :

𝜕2𝑟

𝜕𝑣2
≤ 0. (4)

In classical Myerson’s auction, Assumption A1 often guarantees
the monotonicity of the auction, and incentive compatibility of
the auction [26]. The remaining three assumptions are standard
technical assumptions for demand price functions. A wide range of
functions satisfies the four assumptions [24].

These four assumptions are essential in characterizing the ob-
jective functions for the bidders and the auctioneer in the green
certificate auction.

Assume the marginal cost of generator 𝑖 to be 𝛼𝑖 . Denote the
total demand by 𝑑 and the generation of generator 𝑖 by 𝑔𝑖 , which is
bounded by the green generation capacity. Specifically, we denote
the green generation capacity by 𝐵𝑖 without purchasing green
certificates in an emission-aware ED. The green certificate grants
the generators more opportunities to get dispatched in ED. For
example, if generator 𝑖 , through the auction, obtains 𝑞𝑖 amount of
green certificates, its maximal generation level becomes 𝐵𝑖 + 𝑞𝑖 .
Remark: We want to emphasize that in the ED process with green
certificates, each unit of electricity can only be allowed to support
the demand through ED if the associated generator could present
the corresponding green certificate for this unit of electricity. This
is the key difference between the classical ED process and the ED
process with green certificates.

Thus, the system operator, based on the outcome of the auc-
tion, could conduct the ED by solving the following optimization
problem:

(P1) min
∑︁𝑁

𝑖=1
𝛼𝑖𝑔𝑖

𝑠 .𝑡 .
∑︁𝑁

𝑖=1
𝑔𝑖 = 𝑑

0 ≤ 𝑔𝑖 ≤ 𝐵𝑖 + 𝑞𝑖 ∀𝑖 .

(5)

The first constraint ensures the supply-demand balance. The second
set of constraints refers to the generation emission constraints.
Problem (P1) decides the energy price 𝜆, the Lagrangian multiplier
associated with the supply-demand balance constraint. Define 𝜆0
to be the energy price without the green certificate auction (i.e., all
the 𝑞𝑖s are zero).

Next, to ensure the existence of a feasible solution, we make
Assumption A5 as:

• A5: When all the certificates are released, the demand𝑑 must
be satisfied with all the generators, i.e.,

𝑑 ≤
∑︁𝑁

𝑖=1
𝐵𝑖 +𝑄. (6)

Thus, we can characterize the change in dispatched generation
(denoted by Δ𝑔𝑖 ) due to the introduction of auction as a function
of the optimal auction outcome 𝑞∗

𝑖
and the energy prices 𝜆0 and 𝜆.

Specifically,

Δ𝑔𝑖 =


𝑞∗𝑖 𝛼𝑖 < 𝜆,

− 𝐵𝑖 𝜆 ≤ 𝛼𝑖 < 𝜆0,
0 𝛼𝑖 ≥ 𝜆0 .

(7)

Eq. (7) allows us to derive the ED profit change for the genera-
tor. Specifically, we can express the extra profit for generator 𝑖 by
participating in the auction as follows:

𝑉𝑖 = Δ𝑔𝑖 (𝜆 − 𝛼𝑖 ) + (𝑔𝑖 − Δ𝑔𝑖 ) (𝜆 − 𝜆0)
= I(𝛼𝑖 < 𝜆)𝜆(𝑔𝑖 − 𝐵𝑖 ) − I(𝑎𝑖 < 𝜆)𝛼𝑖 (𝑔𝑖 − 𝐵𝑖 )
+ I(𝛼𝑖 < 𝜆) (𝜆 − 𝜆0)𝐵𝑖 − I(𝜆 ≤ 𝛼𝑖 < 𝜆0)𝜆0𝐵𝑖
+ I(𝜆 ≤ 𝛼𝑖 < 𝜆0)𝛼𝑖𝐵𝑖
= I(𝛼𝑖 < 𝜆) (𝜆 − 𝛼𝑖 ) (𝑔𝑖 − 𝐵𝑖 ) + 𝜙 (𝜆, 𝜆0, 𝛼𝑖 ),

(8)

where I(·) is the indicator function. The extra profit comes from
two components: the first one is the profit from the additional
generation (i.e., Δ𝑔𝑖 ) and the second one is the profit difference of
the generation due to price change (i.e., 𝑔𝑖 − Δ𝑔𝑖 ). Characterizing
the ED process deepens our understanding of the auction design,
as these two processes closely couple together. From the ED, the
objective of the system operator is to minimize the extra payment
for the certificates in ED while maximizing the auction revenue.
We represent this objective function as follows:

max E𝑣𝑖
[∑︁𝑁

𝑖=1
𝑝𝑖 −

∑︁𝑁

𝑖=1
𝑉𝑖

]
, (9)

where 𝑝𝑖 denotes the payment that bidder 𝑖 pays for 𝑞𝑖 green cer-
tificates.

Each generator’s utility function, denoted by 𝑈𝑖 , consists of two
components: one is the utility extracted from the auction, and the
profit from participating ED1:

𝑈𝑖 = Ψ(𝑞𝑖 , 𝑣𝑖 ) − 𝑝𝑖 +𝑉𝑖 . (10)

We assume that if participating in the auction does not provide the
generator with any extra profit (𝑈𝑖 < 0), it will opt out the auction.

1We assume that for generator 𝑖 , whose marginal cost equals the price, it will not get
dispatched in ED.
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3 REVENUE-MAXIMIZING AUCTION DESIGN
The formulated auction is a variant of the Myerson auction. Com-
pared with the classical Myerson auction, our problem associates
the ED problem with the auction outcome. To decouple the two
processes, we first find a more direct formulation of the ED problem.
In our formulation the final solution 𝜆 comes from a discrete set
{𝛼𝑖 , 𝑖 ∈ [𝑁 ]}.

Note that for a given 𝜆, the best choice of 𝑔𝑖 for generator 𝑖 is as
follows:

𝑔𝑖 = (𝐵𝑖 + 𝑞∗𝑖 )I(𝜆 ≤ 𝛼𝑖 ). (11)

Eq. (11) allows us to express the utility function 𝑈 𝜆
𝑖
of generator 𝑖

as a function of ED price 𝜆 as follows:

𝑈 𝜆𝑖 =

{
Ψ − 𝑝𝑖 + 𝜙 (𝜆, 𝜆0, 𝛼𝑖 ), 𝜆 ≤ 𝛼𝑖 .
Ψ − 𝑝𝑖 + (𝜆 − 𝛼𝑖 )𝑞𝑖 + 𝜙 (𝜆, 𝜆0, 𝛼𝑖 ), 𝜆 > 𝛼𝑖 .

(12)

Note that Ψ is a function of 𝑞𝑖 and 𝑣𝑖 , i.e., Ψ(𝑞𝑖 , 𝑣𝑖 ). We omit the
parameters for neat expression when there is no confusion. Then
we propose to define the virtual demand function 𝐼𝜆 for our auction:

𝐼𝜆 (𝑞𝑖 , 𝑣𝑖 , 𝛼𝑖 ) =


Ψ − 1

𝜌𝑖 (𝑣𝑖 )
𝜕Ψ

𝜕𝑣𝑖
, 𝜆 ≤ 𝛼𝑖 .

Ψ − 1
𝜌𝑖 (𝑣𝑖 )

𝜕Ψ

𝜕𝑣𝑖
− 𝛼𝑖𝑞𝑖 , 𝜆 > 𝛼𝑖 .

(13)

Remark: The virtual demand design is inspired by the classical
Myerson auction and some facts observed from the auction with ED
process: the generators that get dispatched will have low incentive
if their generation costs are high; the incentive of generators which
have not been dispatched due to high costs will not be influenced
by the ED process. That’s also the intuition of our auction design.

Next, we introduce Assumption A6 to facilitate the subsequent
analysis.

• A6: (Rare Item Assumption) For all 𝑣𝑖 profiles, define 𝑞
′
𝑖
as

the quantity to make 𝜕𝐼𝜆 (𝑞𝑖 , 𝑣𝑖 , 𝛼𝑖 )/𝜕𝑞𝑖 = 0 when 𝜆 > 𝛼𝑖 . We
further assume that the following condition holds

∑𝑁
𝑖=1 𝑞

′
𝑖
≥

𝑄 .

Remark: This assumption ensures that all the bidders will compete
for the certificates. More specifically, with Assumption A6, there
always exists 𝑖 that makes 𝜕𝐼𝜆 (𝑞𝑖 , 𝑣𝑖 , 𝛼𝑖 )/𝜕𝑞𝑖 positive, meaning that
the bidder starves for more certificates. We will relax the assump-
tion by adding the capacity constraints in the subsequent analysis,
which means more certificates than necessary are clipped, and the
competition among generators becomes less fierce.

Now we are ready to design the optimal multi-unit auction. In
our framework, the bidder (generation company) bids its own 𝑣𝑖 to
the system operator, who provides a recipe (𝑝𝑖 , 𝑞𝑖 ) for the allocation
and payment.

We construct the optimization problem to derive the best alloca-
tion and payment as the benchmark:

(P2) max
𝑞𝑖

∑︁𝑁

𝑖=1
𝐼𝜆 (𝑞𝑖 , 𝑣𝑖 , 𝛼𝑖 )

𝑠 .𝑡 .
∑︁𝑁

𝑖=1
𝑞𝑖 ≤ 𝑄

(14)

The Karush–Kuhn–Tucker (K.K.T.) conditions [27] yield the char-
acterization of the optimal allocation 𝑞∗

𝑖
s:

𝑞∗𝑖

[
𝜕𝐼

𝜕𝑞𝑖
− 𝜇

]
= 0, and

∑︁𝑁

𝑖=1
𝑞𝑖 ≤ 𝑄

𝑞∗𝑖 ≥ 0

𝑞∗𝑖 = 0 → 𝜕𝐼

𝜕𝑞𝑖
(0, 𝑣𝑖 ) ≤ 𝜇,

(15)

where 𝜇 is the multiplier for the constraint
∑𝑁
𝑖=1 𝑞𝑖 ≤ 𝑄 . The mul-

tipliers for 𝑞∗
𝑖
≥ 0 can be cancelled out by directly discussing the

scenarios when multipliers equal or do not equal 0.
Based on 𝑞∗

𝑖
characteristics, we can further express the certificate

payment 𝑝𝑖 as follows:

𝑝𝑖 =Ψ − 1
𝜌𝑖 (𝑣𝑖 )

𝜕Ψ

𝜕𝑣𝑖

+ I(𝛼𝑖 < 𝜆) (𝜆 − 𝛼𝑖 )𝑞∗𝑖 + 𝜙 (𝜆, 𝜆0, 𝛼𝑖 )
(16)

More specifically, with 𝑞∗
𝑖
, we can calculate Ψ(𝑞∗

𝑖
, 𝑣𝑖 ) based on

bid 𝑣𝑖 . We can also derive 1
𝜌𝑖 (𝑣𝑖 )

𝜕Ψ
𝜕𝑣𝑖

. Then we can use 𝑞∗
𝑖
to conduct

the ED to obtain 𝜆 with auction. Finally, we use the expression 𝜙 in
Eq. (8) to get the final payment in the auction.

To achieve the optimal allocation, we design the auction mecha-
nism described in Algorithm 1.

Algorithm 1 ED-Embedded Green Certificate Auction

Input: The generator 𝑖’s cost 𝛼𝑖 ∀𝑖 ∈ [𝑁 ];
The generator 𝑖’s bidding type 𝑣𝑖 ∀𝑖 ∈ [𝑁 ];

Output: The final allocation 𝑞𝑖 ∀𝑖 ∈ [𝑁 ];
The price 𝜆 for ED process;
The payment 𝑝𝑖 ∀𝑖 ∈ [𝑁 ];

1: Initialize 𝑅 = 0
2: for 𝜆 ∈ {𝛼1, ..., 𝛼𝑁 } do
3: Solve the optimization problem Eqs. (14) using Eqs (16) and

(15) to derive (𝑞𝜆
𝑖
, 𝑝𝜆
𝑖
) ∀𝑖 .

4: Use final auction allocation results and price 𝜆 to conduct
ED process

5: if 𝑑 is exactly satisfied then
6: Calculate the final revenue 𝑅𝑡 for auctioneer;
7: 𝑞𝑖 = 𝑞

𝜆
𝑖
,𝑝𝑖 = 𝑝𝜆𝑖 ∀𝑖; 𝑅 = 𝑅𝑡

8: return (𝑞𝑖 , 𝑝𝑖 ) ∀𝑖; 𝜆;
9: end if
10: end for

The essence of this algorithm is to conduct an optimal multi-unit
auction for the certificates. We first assume a fixed 𝜆 and figure out
the associated revenue. Since 𝜆 is drawn from a discrete set, we can
enumerate all possible 𝜆s. During the enumeration, we also need
to investigate the proposed auction’s correctness and effectiveness,
guaranteed by the following two theorems.
Theorem 1 Under Assumption A1-A6, there exists a 𝜆 that satisfies
the demand 𝑑 .
Proof: We provide a constructive proof.

First, we sort the generators according to the marginal cost 𝛼𝑖 .
Without loss of generality, we denote the generators by 𝛼1, ..., 𝛼𝑁
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according to the rank. If for 𝜆 = 𝛼𝐾 , we could not satisfy the
demand, i.e.,

𝑑 >
∑︁𝐾−1

𝑖=1
𝐵𝑖 +

∑︁𝐾−1
𝑖=1

𝑞𝑖 (17)

then it’s evident that ∑︁𝐾−1
𝑖=1

𝑞𝑖 ≤ 𝑄 (18)

When 𝜆 increases to 𝜆′ = 𝛼𝐾+1, 𝐼𝜆s for the first𝐾−1 bidders remain
the same. For 𝐾𝑡ℎ bidder, 𝐼𝜆 needs to be subtracted by 𝛼𝐾𝑞𝐾 . From
Eqs. (15), we could conclude that the new auction price 𝜇

′
should

not be higher than the original 𝜇. Therefore, if we denote the new
allocation for bidder 𝑖 as 𝑞∗

𝑖
, we know that∑︁𝐾−1

𝑖=1
𝑞∗𝑖 ≥

∑︁𝐾−1
𝑖=1

𝑞𝑖 (19)

Thus,
∑𝐾
𝑖=1 𝐵𝑖+

∑𝐾
𝑖=1 𝑞𝑖 increases in𝐾 . Recall Assumption A5, which

guarantees that the largest possible generation is higher than the
demand. Together with the fact that

∑𝐾
𝑖=1 𝐵𝑖+𝑄 is strictly increasing

in 𝜆, we are guaranteed to find a 𝜆 that exactly satisfies demand 𝑑 .
■

Theorem 1 guarantees that the auction is always feasible. Then
we show the effectiveness of our mechanism. Define bidder 𝑖’s strat-
egy as 𝑠𝑖 (𝑣𝑖 ), vector 𝑠 as [𝑠1, ..., 𝑠𝑁 ] and vector 𝑠−𝑖 as [𝑠1, ...𝑠𝑖−1,
𝑠𝑖+1, ..., 𝑠𝑁 ]. Thus, we could define the Bayesian equilibrium pro-
file as 𝑠∗ = [𝑠∗1, ..., 𝑠

∗
𝑁
] where 𝑠∗

𝑖
(·) is equilibrium strategy. Assume

that the resulting allocation is deterministic and thus 𝑞𝑖 (𝑥, 𝑣−𝑖 ) =
𝑞𝑖 (𝑠∗𝑖 (𝑥), 𝑠

∗
−𝑖 (𝑣−𝑖 )) and 𝑝𝑖 (𝑥) = E𝑣−𝑖 [𝑝𝑖 (𝑠∗𝑖 (𝑥), 𝑠

∗
−𝑖 (𝑣−𝑖 ))], where

𝑥 denotes the actual bidding for bidder 𝑖 . We also denote that
𝑞−𝑖 (𝑥, 𝑣−𝑖 ) = [𝑞1 (𝑠∗𝑖 (𝑥), 𝑠

∗
−𝑖 (𝑣−𝑖 )), ..., 𝑞𝑖−1 (𝑠

∗
𝑖
(𝑥), 𝑠∗−𝑖 (𝑣−𝑖 )),

𝑞𝑖+1 (𝑠∗𝑖 (𝑥), 𝑠
∗
−𝑖 (𝑣−𝑖 )), ..., 𝑞𝑁 (𝑠∗

𝑖
(𝑥), 𝑠∗−𝑖 (𝑣−𝑖 ))].

These notations allow us to express the expected surplus for
generator 𝑖 , denoted by Π𝑖 (𝑥, 𝑣𝑖 ), as follows:

Π𝑖 (𝑥, 𝑣𝑖 )
= E𝑣−𝑖 [Ψ(𝑞𝑖 (𝑥, 𝑣−𝑖 ), 𝑣𝑖 )] − 𝑝𝑖 (𝑥)

+ E𝑣−𝑖 [(𝜆(𝑞𝑖 (𝑥, 𝑣−𝑖 ), 𝑞−𝑖 (𝑥, 𝑣−𝑖 )) − 𝛼𝑖 )+𝑞𝑖 (𝑥, 𝑣−𝑖 )]
+ E𝑣−𝑖 [𝜙 (𝜆(𝑞𝑖 (𝑥, 𝑣−𝑖 ), 𝑞−𝑖 (𝑥, 𝑣−𝑖 )), 𝜆0, 𝛼𝑖 )]

= E𝑣−𝑖 [Ψ(𝑞𝑖 (𝑥, 𝑣−𝑖 ), 𝑣𝑖 )] − 𝑝𝑖 (𝑥)
+ E𝑣−𝑖 [(𝜆(𝑥, 𝑣−𝑖 ) − 𝛼𝑖 )+𝑞𝑖 (𝑥, 𝑣−𝑖 )]
+ E𝑣−𝑖 [𝜙 (𝜆(𝑥, 𝑣−𝑖 ), 𝜆0, 𝛼𝑖 )],

(20)

where (·)+ is the operator max(·, 0). The expected surplus Π𝑖 (𝑥, 𝑣𝑖 )
is composed of three terms: the expected valuation, the payment,
and the expected extra profit in Eq. (8) when generator 𝑖’s bidding
𝑥 .

To characterize the effectiveness, we introduce both Bayesian
Incentive Compatibility (BIC) and Interim Individual Rationality
(Interim IR).
Definition 1 (Bayesian Incentive Compatibility (BIC)) For the best
strategy 𝑠∗

𝑖
(𝑣𝑖 ), BIC guarantees that

Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) = max
𝑥

Π𝑖 (𝑥, 𝑣𝑖 ) .

Definition 2 (Interim Individual Rationality (Interim IR)) Interim
IR requires that Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) ≥ 0.
Theorem 2 Our designed auction satisfies both BIC and Interim IR.
To prove this theorem, we first construct the equivalent conditions

for BIC and Interim IR in the following Lemma.
Lemma 1 (BIC and Interim IR equivalence) Under the Assumptions
A4 andA6, if the auction allocation rule𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 ) is non-decreasing
in 𝑣𝑖 , the equivalence condition for BIC and Interim IR is that the
expected surplus could be expressed as follows:

Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) =Π𝑖 (𝑣𝑖 , 𝑣𝑖 )

+ E𝑣−𝑖

[∫ 𝑣𝑖

𝑣𝑖

𝜕Ψ(𝑞𝑖 (𝑧, 𝑣−𝑖 ), 𝑧)
𝜕𝑧

𝑑𝑧

]
(21)

Lemma 1 allows us to embed these two notions (BIC and Interim
IR) into the objective of optimization for maximizing revenue. We
can also show the monotonicity based on the characteristics of the
ED process to support our Lemma 1, with details in Appendix A.
Remark: Theorem 2 is remarkable, leading to many exciting and in-
sightful observations on our auction design. We find that 𝐼𝜆 , which
reflects the virtual demand for the generator, becomes lower when
its cost becomes higher if it is dispatched. It makes sense that a
smaller cost in generation will raise the incentive. However, for
other cases, the observation is not very intuitive. By diving into the
details of the proof (See Appendix B), we realize that the generators
that do not get dispatched have higher incentives. Specifically, the
system operator extracts extra payments for all dispatched genera-
tors from the profits associated with the dispatch. This procedure
reduces the incentives of these generators. From the perspective of
the system operator, this is highly desirable. Such a process rewards
the high-cost generators with more willingness to conduct carbon
emission reduction.

From the perspective of economic dispatch, after the possible
assignment of green certificate, the electricity prices associated
with ED will not increase. When the price does not change, the
generators whose cost is lower than the price will generate more if
they purchase the certificates. When ED price decreases, some of
the generators will be squeezed out for their high costs.

While the proof for Theorem 2 is too long, we provide all the
details in Appendix B. Nonetheless, we want to highlight the follow-
ing insightful Proposition, which is a direct result from the proof
for Theorem 2.
Proposition 1 The optimal allocation 𝑞∗

𝑖
is monotonic in type 𝑣𝑖 .

This proposition shows the characteristics of the optimal allo-
cation. The increasing number of one type of participants could
jointly drive the ED price closer to the marginal generation cost
of this type and obtain more dispatched generation. Hence, the
type information will determine the competitiveness in certificate
assignment and the associated ED process. Higher type yields more
certificate assignment and more generation and revenue in the ED
process.

4 COMPETITION FOR CERTIFICATES
This section considers the capacity constraints for the green certifi-
cates. As mentioned in the previous section, we consider competi-
tive cases with rare certificate supply specified by Assumption A6.
In this section, we consider the capacity constraints that limit the
generators’ auction outcomes below their physical generation ca-
pacities, which significantly affects the characteristics of certificate
purchase competition among generators in the auction.
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Particularly, the capacity constraint means that the system opera-
tor prevents impossible generation outcome with the auction. Note
that the green generation limit is the sum of the green generation
capacity without certificate 𝐵𝑖 and auction assignment 𝑞𝑖 . If this
limit is higher than the maximal physical generation capacity 𝐺𝑖 ,
the system operator judges that the spare part (i.e., 𝐵𝑖 + 𝑞𝑖 − 𝐺𝑖 )
would never be used by the generator itself and refuses to allocate
this spare part. The capacity constraint will limit the pure green
certificate arbitrage among the generating companies.

We modify the optimization problem (P2) with the capacity con-
straints as follows:

(P3) max
𝑞𝑖

∑︁𝑁

𝑖=1
𝐼𝜆 (𝑞𝑖 , 𝑣𝑖 , 𝛼𝑖 )

𝑠 .𝑡 .
∑︁𝑁

𝑖=1
𝑞𝑖 ≤ 𝑄

0 ≤ 𝑞𝑖 ≤ 𝐺𝑖 − 𝐵𝑖 ,∀𝑖

(22)

The new constraints allow our mechanism applicable to both
competitive and non-competitive scenes.

First, assume that the generators need to compete for the green
certificates. In other words, even though the capacity constraints
will reduce the willingness for the generators to purchase certifi-
cates, the competition remains. In this case, we could conduct the
allocation according to optimization problem (P3).

To guarantee the truthfulness, the key is to show that our allo-
cation with (P3) is monotone.
Theorem 3: Under Assumption A6, if we assign the certificates
following modified Algorithm 1, which replaces Problem (P2) with
(P3), then 𝑞∗

𝑖
is non-decreasing in 𝑣𝑖 .

We extend the proof of Theorem 1 and 2 to prove Theorem 3.
We consider the cases when the capacity constraints are active
and inactive respectively. Clearly it strictly follows our proofs for
Theorem 1 and 2 when constraints are inactive. For active capacity
constraints, it can be proved based on the following observation:
the generator will keep the maximal generation when 𝑣𝑖 increases.
The detailed proof is provided in Appendix C.

After discussing the competitive scenes, we modify our mecha-
nism to be adaptive for the non-competitive cases, where

∑𝑁
𝑖=1𝐺𝑖 −

𝐵𝑖 < 𝑄 . In this case, we use Eq. (16) for payment design to guarantee
truthfulness and rationality. In general, for the optimal auction with
capacity constraints, we could modify Algorithm 1 to achieve desir-
able properties. We summarize the discussions above in Algorithm
2.

5 SAMPLE COMPLEXITY ANALYSIS
This section focuses on the scenarios when the distribution function
for each type 𝑣𝑖 is unknown. In this case, we need to learn the value
distribution from the historical samples, and we are interested in
understanding how many samples are necessary to achieve an
approximately optimal auction.

To simplify the analysis, we first reformulate our auction, by
expressing the auction as a function ℎ whose inputs are different
constant cost𝛼𝑖 and type 𝑣𝑖 ∀𝑖 ∈ [𝑁 ]. Themaximal revenue is lower
than max𝑞𝑖

∑𝑁
𝑖=1 Ψ(𝑞𝑖 , 𝑣𝑖 ), denoted by a constant 𝐶1. We make the

following general assumptions on the uniform price function and
the distribution functions for 𝑣𝑖 .

Algorithm 2 Auction with Capacity Constraints
Input: Inputs of Algorithm 1;

The generator 𝑖’s physical capacity 𝐺𝑖 ∀𝑖 ∈ [𝑁 ] and green
generator capacity without certificate 𝐵𝑖 ;

Output: Outputs of Algorithm 1;
1: Initialize 𝑅 = 0
2: if

∑𝑁
𝑖=1𝐺𝑖 − 𝐵𝑖 < 𝑄 then

3: 𝑞𝑖 = 𝐺𝑖 − 𝐵𝑖
4: Decide 𝜆 through ED process and decide 𝑝𝑖 according to Eq.

(16).
5: return (𝑞𝑖 , 𝑝𝑖 ) ∀𝑖; 𝜆;
6: else
7: Conduct ED-Embedded Green Certificate Auction (i.e., Al-

gorithm 1) with the optimization problem (P3) and Eq. (16),
yielding (𝑞𝑖 , 𝑝𝑖 ) ∀𝑖; 𝜆;

8: end if

• A7: Uniform price function 𝑟 (𝑞, 𝑣) satisfies that | 𝜕𝑟𝜕𝑣 | and
| 𝜕2𝑟
𝜕𝑣2

| are bounded over the interval [𝑣𝑖 , 𝑣𝑖 ].
• A8: For the distribution function 𝑓𝑖 , we assume 𝑓𝑖 > 0 over
the interval [𝑣𝑖 , 𝑣𝑖 ] and 𝑓𝑖 is differentiable.

• A9: Assume 𝜌𝑖 (𝑣𝑖 )−1 is Lipschitz continuous with parameter
𝐿3.

These assumptions pave the way for characterizing function ℎ,
the mapping from v = {𝑣𝑖 , ∀𝑖 ∈ [𝑁 ]} to [0, 1].

Since v follows the distribution 𝐹 = 𝐹1 × 𝐹2 × ...× 𝐹𝑁 , i.e., all the
bidder types are independent, it holds that:

ℎ(𝐹 ) = Ev∼𝐹 [ℎ(v)] . (23)

Suppose the mechanism could only be chosen from a hypoth-
esis class, denoted by H . 𝑂𝑃𝑇H (𝐹 ) shows the optimal expected
revenue as in the following equation:

𝑂𝑃𝑇H (𝐹 ) = sup
ℎ∈H

ℎ(𝐹 ). (24)

Thus, our samples are from the distribution 𝐹 . To characterize
the sample complexity, we consider 𝐸𝑖 as the uniform distribution
over 𝑖𝑡ℎ coordinate of the samples, and we define 𝐸 = 𝐸1 ×𝐸2 × ...×
𝐸𝑁 . The sample complexity for our hypothesis class H is defined
to be the minimum number of samples 𝑆 (𝜖, 𝛿) such that for any
distribution 𝐹 , we could find a mechanism ℎ with probability 1 − 𝛿
satisfying

ℎ(𝐸) ≤ 𝑂𝑃𝑇H (𝐹 ) − 𝜖, (25)

where 𝜖 is a small number in [0, 1].
Now, we conclude the upper bound of the sample complexity

for our auction as follows:
Theorem 4: In our proposed Green Certificate Auction with 𝑁
generators, the sample complexity is upper bounded by𝑂 ( 𝑁 2

𝜖3
𝑙𝑜𝑔 1

𝛿
)

when 𝜖 is small enough.
We provide the proof in Appendix D.

6 NUMERICAL STUDIES
This section conducts numerical studies to evaluate the perfor-
mance of our proposed auction design.
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Figure 2: The multi-period auction results

We use the field generator marginal cost data, and capacity data
in EIA-860 collected in [28]. The dataset (EIA-860 and EIA-923) that
we use is the generation marginal cost and capacity data collected
by U.S. Department of Energy, and Energy Information Administra-
tion (EIA) for all electric power plants in the United States in 2019.
We use the total generation and the annual fuel cost in EIA-923 to
estimate the linear marginal cost and we also find the correspond-
ing generator’s capacity in EIA-860. We choose 112 generators that
are distributed in the same region (Alabama) to conduct our experi-
ments. Then we randomly assign the demand 𝑑 and the quantity of
the total certificates 𝑄 , guaranteeing 𝑑 ≤ ∑𝑁

𝑖=1 𝐵𝑖 +𝑄 . The value
𝑣𝑖 for each generator 𝑖 is also set randomly. Specifically, we try to
take the values from a certain distribution (uniform or truncated
normal). We set function 𝑟 (𝑞, 𝑣) to have the following polynomial
form:

𝑟 (𝑞, 𝑣) = 𝑔 − 𝑎1𝑞2 + 𝑏1𝑣𝑞 − 𝑎2𝑣2 − 𝑎3𝑞 + 𝑏2𝑣 . (26)
This form satisfies Assumptions A1-A4, and the constant we men-
tioned in assumptions could also be well calculated.

In the following subsections, we conduct two types of numerical
studies to examine the performance of our proposed auction. Since
our proposed auction focuses on one-shot trading and we have
proved its effectiveness, we try to extend it tomulti-shot trading.We
propose some heuristic strategies to optimize the revenue and verify
the performances empirically. Then, we verify the effectiveness of
our sample complexity bound for our proposed auction with the
empirical distribution.

6.1 Auction verification
We design the experiments for joint ED and auction design. We
compare the auction outcomes of three mechanisms: our mecha-
nism, the auction without embedding ED and randomly assignment.
The auction without embedding ED means that we first conduct the
multi-demand auction in [16], which is similar with the Myerson
auction, then we conduct ED process. Randomly assignment means
that we randomly assign the certificates, which also satisfies IC. We
repeat the experiments for 100 times to derive convincing results.
Thus, we can verify the optimality of our proposed mechanism
under different total certificate 𝑄 levels in Fig. 3(a). We observe
the results by changing 𝑄 from 9% to 27% of 𝑑 . We can find that
if we do not consider the ED process in the auction, the revenue
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Figure 3: Experiments for joint ED and auction design

decreases. We also find the randomly assignment has the worst
performance. Then we choose one generator to examine its revenue
under different biddings in Fig. 3(b). It can be observed that if it
does not bid truthfully, it will suffer a decrease in the revenue.

6.2 Extension to Multi-Shot Scenarios
First, we heuristically generalize our framework to a more realistic
scenario with the multi-period auction for each dispatch decision
time. The main difference between one-shot auction and multi-shot
auctions is that if the participants do not use certificates in the
current period, this auction will influence the auction in the next
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round. Here, we assume the participants only need to bid its value
at the first period. Thus if it does not know the future demand, our
auction is still truthful automatically. The system operator needs
to determine the total certificate quantity they want to put into
the auction. If the system operator releases too many certificates,
due to the accumulation effect and the declining marginal values,
the participants with certificates might avoid purchasing more. In
contrast with the one-shot auction, we also take the cost of releasing
the certificate into consideration as we could not release unlimited
certificates. Such a releasing cost represents the punishment in the
real world if the system operator releases excessive certificates but
cannot collect them for carbon reduction.

This problem is challenging since we are unaware of the exact
demand in the next period. Therefore, we design four heuristic
strategies, emphasizing the significance of determining the release
amount.

The strategies are fixed release (FR), random release (RR), pro-
portional to last mean demand (PPMD), and reinforcement learning
(RL). We simulate 𝑑 with a typical two-peak distribution for each
24 hours, utilizing two Gaussian curves with the same variance and
different mean. We also consider a release cost for each piece of
certificate and measure the strategies’ performances. The strategies
are specified as follows:

- FR: Each time, we release a fixed optimal quantity of certifi-
cates based on the expected demand in one period.

- RR: Each time, we release a random quantity of certificates.
- PPMD: Each time, we calculate the optimal quantity of cer-
tificates based on the mean demand at the last 6 time slots
and apply the proportion between certificate amount and
mean demand in the current period.

- RL: Run a deep Q-learning framework and decide the certifi-
cate amount according to the historical demands and corre-
sponding actions and rewards.

Concerning the detailed RL setting, we conduct a simple deep
Q-learning framework with the input state of the last certificate
remaining for all players and the last six periods’ demand. The
network is a 3-layer Multilayer Perceptron (MLP) model.

Our action for Deep Q-Network (DQN) comes from 100 discrete
levels for certificate releasing, which searches in 10,100 and 1,000
levels. We also set the learning rate to be 0.001 and the batch size
to be 64 in a memory capacity of 400. The Q network iterations for
Q-learning is set to be 2400 steps. The action chosen proportion for
exploring and exploiting is set to be 0.9. The proportion of future
reward is set to be 0.6. We repeat the experiment 10 times for more
convincing results.

We take 3 days with one hour resolution as an episode to train
and verify the effectiveness of the four strategies. Fig. 2 summarizes
the results.

Fig. 2(a) implies that RL gradually derives better performances
and exceeds other strategies with the increasing training episodes.
A strategic release with RL could earn about twice more than FR or
RR. The average reward tends to increase after the first peak, which
means RL learns a better strategy by experiencing the first peak
and therefore the fluctuation for RL decreases. PPDM and RR suffer
larger fluctuations due to the embedded randomness compared
with FR. Fig. 2(b) shows that the release of the certificates often

increases when the demand in the following period increases. It
shows that RL tends to store more spare certificates when demand
is slightly increasing. This observation motivates the design of
PPMD, which yields better performance in Fig. 2(a) but it does not
perform as well as RL. From the figure, we also find that at the first
peak, the amount of the certificate release is quite different from
the amounts in the following peaks, which also support the fact
that RL is learning strategies at the first peak. Finally, we observe
the tendency of the amount for the certificates that are still unused
for a particular player. Most of the time, when the players take
part in the dispatch, the certificate could be used for generation.
However, there could be late nights when the demand decreases
sharply, leading to many unused certificates. It again emphasizes
the importance of reducing these excess useless certificates that
could influence the maximal revenue of the next period’s auction.
Fig. 2(c) displays that our RL strategy successfully decreases the
amount of excess certificates.

The results compare the effectiveness between the proposed RL
strategy and other simple strategies. This framework could be a
potential solution in the actual implementation of our auction in
multi-shot scenes, determining an appropriate release for the quan-
tity of the certificate. On the other hand, choosing the certificate
quantity arbitrarily causes more excess certificates, which leads to
revenue loss. Therefore, in the multi-shot scenario, we should plan
the release in each period in detail.

6.3 Sample Complexity Verification
This section examines the tightness of the bound with numerical
studies.

In addition to the setting mentioned above for auction and value,
we assume that the value distribution’s intervals are uniformly
chosen. For the truncated normal distribution, the variance is sym-
metry and 1

8 of the scale length. The probability 𝛿 in our sample
complexity bound is set to be 0.1 for error 𝜖’s analysis. For the error
probability analysis, we also set the error 𝜖 as different values to
study the relationship between the error probability and the size of
samples. For each sample size, we repeat the experiments 800 times
to derive robust results.

Fig. 4 shows the numerical results. Based on our findings, the
more the number of samples increases, the closer the results are to
the original one for both distributions. The error decreases sharply
as the sample size increases.

Based on Fig. 4(a), the theoretical curve is very close to the 90%
percentile, which reflects the tightness of the proposed error bound
in this case. For the normal distribution in Fig. 4(c), the theoretical
bound is also higher than the 90% percentile, and empirically, it
could be closer to the mean error, which shows that the theoretical
results represent the mean error sometimes.

Next, we study the impact of error probability 𝛿 , which is the
probability that we could not derive a good approximate auction
concerning the sample number and error requirement 𝜖 . Obviously,
the more the number of samples increases, the more the error
probability decreases. In other words, the accuracy of the results
increases. Moreover, the error probability increases by improving
the error requirement 𝜖 . We take different 𝜖s to view the probabil-
ity distribution of the errors for the approximate auction with the
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Figure 4: The error analysis with different size of samples

empirical distribution. Fig. 4(b) displays that our theoretical upper
bound adequately describes the changes of the error probability.
Regarding Fig. 4(d), the upper bound is loose, and the actual er-
ror is more minor, implying a good approximation performance
even if the samples are few. We can also find out that the error
probability decreases fast for the normal distribution in Fig. 4(d),
which indicates that our auction that utilizes the samples can learn
the samples’ distribution fast and can also learn the strategies that
make full use of the samples. Comparing the two distributions, we
find that the bound for normal distribution could be looser than
the uniform distribution. We need to afford more if we misjudge
the hazard rate for normal distribution in our theoretical analysis,
and our auction would also calculate a less accurate virtual demand.
Overall, as shown in Fig. 4, our theoretical bound could also be
loose. That is due to the large scaling in Eq. (62) and the use the uni-
form upper bounds and Lipschitz constants to describe the uniform
characteristics of the function.

We also find that the 80% percentile is closer to the 90% percentile
in Fig. 4(a) and is closer to the 10% percentile in Fig. 4(c). This im-
plies that the error for normal distribution has higher probability
to be larger than the majority of traces compared with uniform dis-
tribution. Hence, when utilizing normal distribution, we still need
to collect more samples to reduce the probability of encountering
the extreme samples even though the bounds perform well.

The above results show the effectiveness of our proposed theo-
retical sample complexity analysis and corresponding approximate
auctions. The willingness of the generators is measurable with-
out knowing any prior knowledge, and it is possible to derive a
relatively good performance with the empirical distribution from
samples. An increase in the scale of the samples improves results. In
practice, the proposed theory shows howmuch error the auctioneer
could have with different numbers of samples. Then the auctioneer
can also decide on the number of questionnaires to ask for the val-
ues from the homogeneous participants considering error tolerance.
Furthermore, more knowledge about the willingness’s distribution
paves the way for designing another reward mechanism for each
participant’s contribution.

7 CONCLUSION
We propose a framework for the green certificate auction with the
call for carbon emission reduction and carbon capture technology
development. Our proposed auction considers the ED process and

derives truthfulness and optimality. To adequately describe the
willingness of the generators to contribute to carbon neutrality,
we propose to utilize sample complexity to assist our auction. We
derive the upper bound of the sample number we need to derive a
near-optimal outcome.

This work could be extended in many interesting directions.
We plan to derive a tighter upper bound and lower bound for the
sample complexity. We also intend to study the continuous complex
marginal cost function in detail and other value functions that do
not satisfy the assumptions in this paper. In addition, we do not
specifically consider the impact of randomness in the market on our
auction design. We plan to embed chance constrained optimization
[29] or robust optimization [30] into our auction design to tackle
this challenge.
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A PROOF FOR LEMMA 1
(Necessary conditions) We first prove that the Eq. (21) can be
induced by the BIC and Interim IR together with an extra condition,
that is Π(𝑥, 𝑣𝑖 ) ≥ Π𝑖 (𝑥, 𝑥) for 𝑣𝑖 ≥ 𝑥 , which implies that a bidder
with a higher type, who joins the auction, could extract more for
the same bidding. In the following proof, we first show Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) ≥
Π𝑖 (𝑥, 𝑣𝑖 ) and then Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) ≥ Π𝑖 (𝑥, 𝑥) for 𝑣𝑖 ≥ 𝑥 .

We start from the following observation:

Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) − Π𝑖 (𝑣𝑖 , 𝑥)
= E𝑣−𝑖 [Ψ(𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑣𝑖 ) − Ψ(𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑥)]

= E𝑣−𝑖

∫ 𝑞𝑖 (𝑣𝑖 ,𝑣−𝑖 )

0

∫ 𝑣𝑖

𝑥

𝜕𝑟 (𝑧,𝑦)
𝜕𝑦

𝑑𝑦𝑑𝑧

≤ E𝑣−𝑖

∫ 𝑞𝑖 (𝑣𝑖 ,𝑣−𝑖 )

0

∫ 𝑣𝑖

𝑥

𝜕𝑟 (𝑧, 𝑥)
𝜕𝑥

𝑑𝑦𝑑𝑧,

(27)

where the inequality follows Assumption A4. Hence for all 𝑣𝑖 ≤ 𝑥 ,
we have

0 ≤ Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) − Π𝑖 (𝑥, 𝑥)

≤ (𝑣𝑖 − 𝑥)E𝑣−𝑖
∫ 𝑞𝑖 (𝑣𝑖 ,𝑣−𝑖 )

0

𝜕𝑟 (𝑧, 𝑥)
𝜕𝑥

𝑑𝑧
(28)

Therefore Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) is continuous. In fact, Π𝑖 (𝑣𝑖 , 𝑥) is also differ-
entiable with respect to 𝑥 since Ψ(𝑞(𝑥, 𝑣−𝑖 ), 𝑥) is differentiable with
respect to 𝑥 . Moreover, we know that Π𝑖 (𝑥, 𝑥) is both continuous

and non-decreasing, and hence differentiable almost everywhere.
Recall the definition of BIC that

𝑣𝑖 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 [Π𝑖 (𝑥, 𝑥) − Π(𝑣𝑖 , 𝑥)] (29)

The first-order condition yields that:

𝑑Π𝑖
𝑑𝑥

(𝑥, 𝑥) − 𝜕Π𝑖
𝜕𝑥

(𝑣𝑖 , 𝑥) = 0 at 𝑥 = 𝑣𝑖 (30)

This further indicates that

𝑑Π𝑖
𝑑𝑣𝑖

(𝑣𝑖 , 𝑣𝑖 ) =
𝜕Π𝑖 (𝑥, 𝑣𝑖 )

𝜕𝑣𝑖
|𝑥=𝑣𝑖

= E𝑣−𝑖
𝜕Ψ(𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑣𝑖 )

𝜕𝑣𝑖
.

(31)

Thus Eq. (21) directly follows the continuity of Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) and Eq.
(31).

(Sufficient conditions) Next, we prove Eq. (21) is the sufficient
condition for BIC and IR.

First we observe a simple proposition that Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) ≥ 0. It
means that we could not force any bidder to participate and the
expected surplus needs to be non-negative. Then if Π𝑖 satisfies Eq.
(21), we can further show for 𝑦 ≥ 𝑥 , it holds

Π𝑖 (𝑦,𝑦) − Π𝑖 (𝑥, 𝑥)

= E𝑣−𝑖

∫ 𝑦

𝑥

𝜕Ψ(𝑞𝑖 (𝑧, 𝑣−𝑖 ), 𝑧)
𝜕𝑧

𝑑𝑧

≥ E𝑣−𝑖

∫ 𝑦

𝑥

𝜕Ψ(𝑞𝑖 (𝑥, 𝑣−𝑖 ), 𝑧)
𝜕𝑧

𝑑𝑧,

(32)

where 𝑞𝑖 (𝑧, 𝑣−𝑖 ) is set as non-decreasing in 𝑧.
Due to the characteristics of 𝑟 , we know that it is strictly increas-

ing in 𝑣 . Thus, Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) ≥ 0, which is exactly Interim IR.
Hence, standard mathematical manipulation yields that for𝑦 ≥ 𝑥

Π𝑖 (𝑥,𝑦) − Π𝑖 (𝑥, 𝑥)

= E𝑣−𝑖

∫ 𝑦

𝑥

𝜕Ψ(𝑞𝑖 (𝑥, 𝑣−𝑖 ), 𝑧)
𝜕𝑧

𝑑𝑧.
(33)

The same trick further implies that for𝑦 ≥ 𝑥 ,Π𝑖 (𝑥,𝑦) ≥ Π𝑖 (𝑥, 𝑥).
Together, they yield

Π𝑖 (𝑦,𝑦) ≥ Π𝑖 (𝑥,𝑦) 𝑦 ≥ 𝑥 . (34)

The almost identical argument could be made for the case when
𝑦 ≤ 𝑥 , which derives the BIC conditions. ■

B PROOF FOR THEOREM 2
Lemma 1 indicates an equivalent condition for Interim IR and BIC.
That is, if our designed auction satisfies Eq. (21) and the final allo-
cation 𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 ) increases with 𝑣𝑖 , our auction could satisfy both
Interim IR and BIC. Then, we only need to maximize the revenue
of the auction through the allocation and payment design.

Therefore we embed the condition into Eq. (20) and derive the
expression of the revenue for the system operator. More specifically,
we could find that the expected payment for the bidder 𝑖 is as
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follows:
𝑝𝑖 (𝑣𝑖 ) =E𝑣−𝑖 [Ψ(𝑞(𝑣𝑖 , 𝑣−𝑖 ))

−
∫ 𝑣𝑖

𝑣𝑖

𝜕Ψ(𝑞𝑖 (𝑧, 𝑣−𝑖 ), 𝑧)
𝜕𝑧

𝑑𝑧

+ (𝜆(𝑣𝑖 , 𝑣−𝑖 ) − 𝛼𝑖 )+𝑞𝑖 (𝑥, 𝑣−𝑖 )
+ 𝜙 (𝜆(𝑣𝑖 , 𝑣−𝑖 ), 𝜆0, 𝛼𝑖 )] − Π𝑖 (𝑣𝑖 , 𝑣𝑖 )

(35)

We could also derive the expected revenue for the bidder 𝑖 that

𝑝𝑖 =E𝑣𝑖 ,𝑣−𝑖 [Ψ(𝑞(𝑣𝑖 , 𝑣−𝑖 ))

−
∫ 𝑣𝑖

𝑣𝑖

𝜕Ψ(𝑞𝑖 (𝑧, 𝑣−𝑖 ), 𝑧)
𝜕𝑧

𝑑𝑧

+ (𝜆(𝑣𝑖 , 𝑣−𝑖 ) − 𝛼𝑖 )+𝑞𝑖 (𝑥, 𝑣−𝑖 )
+ 𝜙 (𝜆(𝑣𝑖 , 𝑣−𝑖 ), 𝜆0, 𝛼𝑖 )] − Π𝑖 (𝑣𝑖 , 𝑣𝑖 )

=E𝑣𝑖 ,𝑣−𝑖 [Ψ(𝑞(𝑣𝑖 , 𝑣−𝑖 ))

− 𝜕Ψ(𝑞𝑖 (𝑧, 𝑣−𝑖 ), 𝑧)
𝜕𝑧

1
𝜌𝑖 (𝑣𝑖 )

+ (𝜆(𝑣𝑖 , 𝑣−𝑖 ) − 𝛼𝑖 )+𝑞𝑖 (𝑥, 𝑣−𝑖 )
+ 𝜙 (𝜆(𝑣𝑖 , 𝑣−𝑖 ), 𝜆0, 𝛼𝑖 )] − Π𝑖 (𝑣𝑖 , 𝑣𝑖 ),

(36)

where 𝜌𝑖 (𝑣𝑖 ) is the hazard rate.
We further design an indicator function 𝜔𝑖 (𝑣𝑖 , 𝑣−𝑖 ) as follows:

𝜔𝑖 (𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑞−𝑖 (𝑣𝑖 , 𝑣−𝑖 ))

=

{1 𝜆(𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑞−𝑖 (𝑣𝑖 , 𝑣−𝑖 )) ≤ 𝛼𝑖
0 𝜆(𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑞−𝑖 (𝑣𝑖 , 𝑣−𝑖 )) > 𝛼𝑖 ,

(37)

For notational simplicity, in the subsequent proof, we simplify
𝜔𝑖 (𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑞−𝑖 (𝑣𝑖 , 𝑣−𝑖 )) to be 𝜔 (𝑣𝑖 , 𝑣−𝑖 ).

This allows us to characterize the final revenue that the system
operator receives denoted by 𝑅:

𝑅 =E𝑣𝑖 ,𝑣−𝑖
∑︁𝑁

𝑖=1
[𝑝𝑖 − 𝜆(𝑣𝑖 , 𝑣−𝑖 )𝜔 (𝑣𝑖 , 𝑣−𝑖 )𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 )

− 𝜙 (𝜆(𝑣𝑖 , 𝑣−𝑖 ), 𝜆0, 𝛼𝑖 )] −
∑︁𝑁

𝑖=1
Π𝑖 (𝑣𝑖 , 𝑣𝑖 )

=E𝑣𝑖 ,𝑣−𝑖
∑︁𝑁

𝑖=1
[Ψ(𝑞(𝑣𝑖 , 𝑣−𝑖 ), 𝑣𝑖 )

− 𝜕Ψ(𝑞𝑖 (𝑧, 𝑣−𝑖 ), 𝑣𝑖 )
𝜕𝑣𝑖

1
𝜌 (𝑣𝑖 )

− 𝛼𝑖𝜔 (𝑣𝑖 , 𝑣−𝑖 )𝑞𝑖 (𝑥, 𝑣−𝑖 )] −
∑︁𝑁

𝑖=1
Π𝑖 (𝑣𝑖 , 𝑣𝑖 )

=E𝑣𝑖 ,𝑣−𝑖
∑︁𝑁

𝑖=1
𝐼𝜆 (𝑞𝑖 , 𝑣𝑖 , 𝛼𝑖 ) −

∑︁𝑁

𝑖=1
Π𝑖 (𝑣𝑖 , 𝑣𝑖 )

(38)

To maximize the revenue, we design the payment 𝑝𝑖 such that
Π𝑖 (𝑣𝑖 , 𝑣𝑖 ) equals 0 sincewe havemade the proposition thatΠ𝑖 (𝑣𝑖 , 𝑣𝑖 ) ≥
0.

Furthermore, we need to maximize
∑𝑁
𝑖=1 𝐼

𝜆 (𝑞𝑖 , 𝑣𝑖 , 𝛼𝑖 ) for all 𝑣𝑖
under the constraint

∑𝑁
𝑖=1 𝑞𝑖 ≤ 𝑄 , which is in optimization problem

(P2). Note that we only need to find the best 𝜆 that exactly satisfies
the demand 𝑑 which is given by Algorithm 1. We also have shown
the existence of the 𝜆.

Finally, we demonstrate that our optimization could be well
solved with the optimality conditions Eqs. (15) and 𝑞𝑖 (𝑣𝑖 , 𝑣−𝑖 ) does
not decrease with 𝑣𝑖 , which is summerized in Proposition 1.

Firstly, we consider the cases that the price in ED is constant
when 𝑣𝑖 increases. Assumption A3 indicates that function 𝐼𝜆 is

quasi-concave, indicating that for all 𝛼 and 𝜆:

𝜕𝐼𝜆

𝜕𝑞
> 0 → 1

𝜌
<

𝑟

𝜕𝑟
𝜕𝑞

(39)

Thus

𝜕2𝐼𝜆

𝜕𝑞2
=
𝜕𝑟

𝜕𝑞
−

𝜕2𝑟
𝜕𝑞𝜕𝑣

𝜌
≤ 𝜕𝑟

𝜕𝑞
−
𝑟 𝜕2𝑟
𝜕𝑞𝜕𝑣

𝜕𝑟
𝜕𝑞

=
𝑟2

𝑞 𝜕𝑟𝜕𝑣

𝜕

𝜕𝑣

(
−𝑞
𝑟

𝜕𝑟

𝜕𝑞

)
< 0

(40)

Therefore, 𝐼𝜆 (𝑞, 𝑣) is in fact strictly quasi-concave for all 𝛼 and
𝜆.

Furthermore, we know that

𝜕2𝐼𝜆

𝜕𝑞𝜕𝑣
=
𝜕𝑟

𝜕𝑣
[1 − 1

𝜕𝑟
𝜕𝑣

𝜕

𝜕𝑣

(
1
𝜌

𝜕𝑟

𝜕𝑣

)
]

=
𝜕𝑟

𝜕𝑣

(
1 + 1

𝜌2
𝑑𝜌

𝑑𝑣

)
− 1
𝜌

𝜕2𝑟

𝜕𝑣2

=
𝜕𝑟

𝜕𝑣

𝑑 𝐽

𝑑𝑣
− 1
𝜌

𝜕2𝑟

𝜕𝑣2

> 0.

(41)

The last inequality follows Assumptions A1 and A4. With our opti-
mization problem (P2), we could verify the optimal solution through
K.K.T. conditions. Due to strict quasi-concavity, we know Eqs. (15)
are also sufficient. The remaining problem is to prove that𝑞∗ (𝑣𝑖 , 𝑣−𝑖 )
is non-decreasing in 𝑣𝑖 . If 𝑞∗𝑖 (𝑣𝑖 , 𝑣−𝑖 ) = 0, it trivially holds that
𝜕𝑞∗𝑖
𝜕𝑣 (𝑣𝑖 , 𝑣−𝑖 ) ≥ 0 since 𝑞∗

𝑖
(𝑣𝑖 , 𝑣−𝑖 ) ≥ 0. If 𝑞∗

𝑖
(𝑣𝑖 , 𝑣−𝑖 ) > 0, we could

derive from Eqs. (15) that

𝜕𝐼𝜆

𝜕𝑞
(𝑞∗𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑣𝑖 ) = 𝜇 (𝑣𝑖 , 𝑣−𝑖 ) . (42)

Differentiating with respect to 𝑣𝑖 yields

𝜕2𝐼𝜆

𝜕𝑞2
𝜕𝑞∗
𝑖

𝜕𝑣𝑖
+ 𝜕2𝐼𝜆

𝜕𝑞𝜕𝑣
=
𝜕𝜇

𝜕𝑣𝑖
. (43)

Then, there are two possible conditions: if 𝜕𝜇
𝜕𝑣𝑖

is non-positive,

then 𝜕2𝐼𝜆

𝜕𝑞𝜕𝑣 is positive in Eq. (41) and 𝜕2𝐼𝜆

𝜕𝑞2
is negative in Eq. (40),

yielding that 𝜕𝑞
∗
𝑖

𝜕𝑣𝑖
is positive. Otherwise, Eqs. (15) indicate that 𝜇 > 0

since 𝜇 is Lagrangian multiplier. Thus for 𝑗 ≠ 𝑖 , we could show if

𝜕𝐼𝜆 (𝑞∗
𝑗
(𝑣𝑖 , 𝑣−𝑖 ), 𝑣 𝑗 )
𝜕𝑞

< 𝜇, (44)

then
𝜕𝑞∗𝑗
𝜕𝑣𝑖

= 0 since 𝑞∗
𝑗
(𝑣𝑖 , 𝑣−𝑖 ) = 0.

If
𝜕𝐼𝜆 (𝑞∗

𝑗
(𝑣𝑖 , 𝑣−𝑖 ), 𝑣 𝑗 )
𝜕𝑞

= 𝜇, (45)

then
𝜕2𝐼𝜆 (𝑞∗

𝑗
(𝑣𝑖 , 𝑣−𝑖 ), 𝑣 𝑗 )
𝜕𝑞2

(
𝜕𝑞∗
𝑗

𝜕𝑣𝑖

)
=
𝜕𝜇

𝜕𝑣𝑖
, (46)
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and thus
𝜕𝑞∗𝑗
𝜕𝑣𝑖

< 0 due to Eq. (40). In general,
𝜕𝑞∗𝑗
𝜕𝑣𝑖

is non-positive.
Together with our Eqs. (15) and 𝜇 > 0, we conclude that

∑︁𝑁

𝑗=1

𝜕𝑞∗
𝑗

𝜕𝑣𝑖
= 0, (47)

i.e., 𝜕𝑞
∗
𝑖

𝜕𝑣𝑖
is non-negative in this case, yielding Interim IR and BIC.

The specific payment 𝑝𝑖 is in our Eq. (36) for this scene.
Now consider the scene that the 𝜆 changes with 𝑣𝑖 . We set the

ED price as 𝜆 and the price after 𝑣𝑖 changes to 𝑣
′
𝑖
as 𝜆

′
.

If 𝜇 does not increase, it is clear that𝑞∗
𝑗
does not decrease through

Eqs. (15) and Eq. (40) for generator 𝑗 whose 𝛼 𝑗 < 𝜆
′
. Furthermore,

we know that 𝜆 is non-increasing. Then if 𝛼𝑖 < 𝜆
′
, 𝑞𝑖 does not

decrease. For 𝜆
′ ≤ 𝛼𝑖 < 𝜆, 𝜕𝐼

𝜆 (𝑞𝑖 ,𝑣𝑖 ,𝛼𝑖 )
𝜕𝑞𝑖

may also increase and quan-
tity of 𝑞𝑖 can be non-decreasing according to Eq. (42). In addition,
𝜕𝐼𝜆 (𝑞𝑖 ,𝑣𝑖 ,𝛼𝑖 )

𝜕𝑞𝑖
of generator 𝑖 does not increase if 𝛼𝑖 ≥ 𝜆. It is obvious

that the quantity of 𝑞𝑖 does not decrease.
Then if 𝑣𝑖 and 𝜇 increase, there are four cases.
1) Assume 𝛼𝑖 < 𝜆.
Then 𝜆 decreases as 𝑣𝑖 increases. If 𝜆 increases, since 𝜇 decreases,

the generator 𝑗 with 𝛼 𝑗 > 𝜆
′
should be allocated less since its 𝐼𝜆 is

constant. However, the total𝑄 still has been allocated which means
that

∑
𝛼 𝑗<𝜆

′ 𝑞 𝑗 increases and the satisfied demand must increase,
which causes the contradiction.

(1.a) Suppose 𝛼𝑖 < 𝜆
′
. Then 𝑞𝑖 increases. That is because 𝑞 𝑗

for 𝛼 𝑗 < 𝛼𝑖 will not increase as 𝜇 increases but the demand still
needs to be satisfied, and 𝑑 −∑

𝛼 𝑗<𝜆
′ 𝐵 𝑗 increases then 𝑞∗𝑖 needs to

increase.
(1.b) It is evident that, 𝛼𝑖 ≥ 𝜆

′
does not hold. The reason is as

follows: If it holds, 𝑣
′
𝑖
may decrease to original 𝑣𝑖 , 𝜇 will decrease,

and the allocation for those generators whose 𝛼 𝑗 < 𝜆
′
will increase

since 𝜕𝐼𝜆 (𝑞 𝑗 ,𝑣𝑗 ,𝛼 𝑗 )
𝜕𝑞 𝑗

does not change. Then the ED price will further

decrease. Hence, the demand could be also satisfied when 𝜆 < 𝜆
′ ≤

𝛼𝑖 , which contradicts to our assumption.
2) Assume 𝛼𝑖 ≥ 𝜆.
The ED price increases, i.e., 𝜆

′
> 𝜆. This is because if the price

decreases, for generator 𝑗 with 𝛼 𝑗 < 𝜆
′
, its allocation will decrease

and the total demand will not be satisfied, which contradicts the
demand constraints in Eqs. (5).

(2.a) Suppose 𝜆
′ ≤ 𝛼𝑖 . Then function 𝜕𝐼𝜆 (𝑞𝑖 ,𝑣𝑖 ,𝛼𝑖 )

𝜕𝑞𝑖
increases in 𝑣𝑖

and for every other generator 𝑗 , its 𝜕𝐼
𝜆 (𝑞 𝑗 ,𝑣𝑗 ,𝛼 𝑗 )
𝜕𝑞 𝑗

will not increase.
Then according to Eqs. (15) and (40), the allocation for 𝑖 , 𝑞∗

𝑖
, will

increase when 𝜇 increases for the other generators.
(2.b) Then we also need to show that the other case 𝜆

′
> 𝛼𝑖

could not hold. If it holds, we could pay attention to the generator

with 𝛼 𝑗 ≥ 𝜆′. Its 𝜕𝐼
𝜆 (𝑞 𝑗 ,𝑣𝑗 ,𝛼 𝑗 )
𝜕𝑞 𝑗

could not change. If 𝑣
′
𝑖
decreases to

𝑣𝑖 , 𝜇 will decrease. Then the quantity of certificates for generator
𝑗 increases and the left-over certificates decrease. We know our
demand can be satisfied at 𝜆

′
, if the left-over certificates decrease, 𝜆

will increase and we could derive 𝛼𝑖 < 𝜆
′ ≤ 𝜆, which contradicts to

our assumption. Therefore, we conclude that 𝑞∗
𝑖
is monotone even

if 𝜆 changes. ■

C PROOF FOR THEOREM 3
We order the generator with respect to their marginal costs as we
do in the proof for Theorem 1.

Without loss of generality, we first assume when 𝜆 = 𝛼𝐾 , we
could not satisfy the demand. Then we try to set 𝜆 to be 𝛼𝐾+1 and
we denote original allocation for generator 𝑖 as 𝑞𝑖 and the new
allocation as 𝑞∗

𝑖
. For generator 𝐾 , its 𝐼𝜆 (𝑞𝐾 , 𝑣𝐾 , 𝛼𝐾 ) will decrease

by 𝛼𝐾𝑞𝐾 . Note that when 𝜆 increases, 𝜇 associated with K.K.T
conditions will not increase according to Eq. (40). Then we could
derive that our allocation will be lower than before. It means that
𝜇 will not increase since 𝜇 ≥ 0. Since 𝜇 decreases, for generator 𝑗
where 𝑗 < 𝐾 , its allocation will not decrease. There are two cases.
First, if 𝑞 𝑗 = 𝐺 𝑗 − 𝐵 𝑗 , 𝜇’s decrease could make the Lagrangian
multiplier of capacity constraint for 𝑗 , 𝜏 𝑗 , increase and 𝑞 𝑗 remains
the same. Otherwise, 𝑞 𝑗 increases due to 𝜏 𝑗 = 0 and 𝜇 decreases.

Therefore,
∑
𝑗<𝐾 𝑞 𝑗 ≤ ∑

𝑗<𝐾 𝑞
∗
𝑗
. Then we could further show

that the maximum demand that could be satisfied
∑𝐾−1
𝑖=1 𝐵 𝑗 + 𝑞 𝑗 <∑𝐾

𝑖=1 𝐵 𝑗 + 𝑞 𝑗 while 𝜆 increases from 𝛼𝐾 to 𝛼𝐾+1. We could find the
maximum demand that could be satisfied is monotonic increasing
and we know we could satisfy the demand if all the generators
take part in the generation and all the certificates are allocated.
Therefore, 𝜆 exists and it is unique.

Then we come back to the proof of Theorem 3. We need to
discuss two cases. If 𝜆 is constant as 𝑣𝑖 increases, then all 𝐼𝜆s are
constant except for 𝑖 . Hence we assume that 𝑣𝑖 increases. Regarding
Eqs. (40) and (41), 𝐼𝜆 is also quasi-concave, yielding a new optimal
condition as follows:

𝜕𝐼𝜆

𝜕𝑞
(𝑞∗𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑣𝑖 ) = 𝜇 (𝑣𝑖 , 𝑣−𝑖 ) + 𝜏𝑖 , (48)

where 𝜏𝑖 is the Lagrangian multiplier associated with the constraint
𝑞𝑖 ≤ 𝐺𝑖 − 𝐵𝑖 . If 𝑞∗𝑖 (𝑣𝑖 , 𝑣−𝑖 ) ≤ 𝐺𝑖 − 𝐵𝑖 , we could derive 𝜏𝑖 = 0. The
analysis is exactly the same as that in Theorem 2. If 𝑞∗

𝑖
(𝑣𝑖 , 𝑣−𝑖 ) =

𝐺𝑖 − 𝐵𝑖 , we assume there exists a 𝑣
′
𝑖
> 𝑣𝑖 that makes 𝑞∗

𝑖
decrease

to 𝑞∗
′
𝑖
. We also define other generation’s allocation as 𝑞∗

′
𝑗
and 𝑗 ≠ 𝑖 .

We could show that
𝐼𝜆 (𝑞∗

′
𝑖 , 𝑣

′
𝑖 , 𝛼𝑖 ) +

∑︁
𝑗≠𝑖

𝐼𝜆 (𝑞∗
′
𝑗 , 𝑣 𝑗 , 𝛼 𝑗 )

> 𝐼𝜆 (𝑞∗𝑖 , 𝑣
′
𝑖 , 𝛼𝑖 ) +

∑︁
𝑗≠𝑖

𝐼𝜆 (𝑞∗𝑗 , 𝑣 𝑗 , 𝛼 𝑗 )

> 𝐼𝜆 (𝑞∗𝑖 , 𝑣
′
𝑖 , 𝛼𝑖 ) − 𝐼

𝜆 (𝑞∗𝑖 , 𝑣𝑖 , 𝛼𝑖 ) + 𝐼
𝜆 (𝑞∗

′
𝑖 , 𝑣𝑖 , 𝛼𝑖 )

+
∑︁

𝑗≠𝑖
𝐼𝜆 (𝑞∗

′
𝑗 , 𝑣 𝑗 , 𝛼 𝑗 ),

(49)

The first inequality holds due to the optimality of 𝑞∗
′
𝑖
. and the

second one holds due to the characteristic of 𝐼𝜆 . Mathematical
manipulations yield that

𝐼𝜆 (𝑞∗𝑖 , 𝑣𝑖 , 𝛼𝑖 ) + 𝐼
𝜆 (𝑞∗

′
𝑖 , 𝑣

′
𝑖 , 𝛼𝑖 )

− 𝐼𝜆 (𝑞∗
′
𝑖 , 𝑣𝑖 , 𝛼𝑖 ) − 𝐼

𝜆 (𝑞∗𝑖 , 𝑣
′
𝑖 , 𝛼𝑖 ) > 0,

(50)

Thus
(𝐼𝜆 (𝑞∗𝑖 , 𝑣𝑖 , 𝛼𝑖 ) + 𝐼

𝜆 (𝑞∗
′
𝑖 , 𝑣

′
𝑖 , 𝛼𝑖 ) − 𝐼

𝜆 (𝑞∗
′
𝑖 , 𝑣𝑖 , 𝛼𝑖 )

−𝐼𝜆 (𝑞∗𝑖 , 𝑣
′
𝑖 , 𝛼𝑖 ))/((𝑞

∗
𝑖 − 𝑞

∗′
𝑖 ) (𝑣𝑖 − 𝑣

′
𝑖 )) < 0,

(51)

If 𝜆 does not change, then 𝐼𝜆 is continuous. With the Lagrange
mean value theorem, there exists (𝑞, 𝑣) that makes 𝜕2𝐼𝜆

𝜕𝑞𝜕𝑣 < 0. As we
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show in Eq. (41), we find the contradiction. Therefore, the mono-
tonicity holds when 𝜆 does not change.

If 𝜆 changes, we can also prove the monotonicity. We need to
analyze the cases for 𝑞∗

𝑖
(𝑣𝑖 , 𝑣−𝑖 ) = 𝐺𝑖 −𝐵𝑖 and 𝑞∗𝑖 (𝑣𝑖 , 𝑣−𝑖 ) < 𝐺𝑖 −𝐵𝑖 .

We first discuss for 𝑞∗
𝑖
(𝑣𝑖 , 𝑣−𝑖 ) < 𝐺𝑖 − 𝐵𝑖 . In the following part, we

denote the new ED price as 𝜆
′
, new type after increasing as 𝑣

′
𝑖
, and

new quantity as 𝑞∗
′
𝑖
for generator 𝑖 .

We first suppose 𝜇 is not increasing. Then we could show that
𝑞∗

′
𝑖

does not decrease. Since 𝜇 is not increasing, for generator 𝑗
whose 𝛼 𝑗 < 𝜆

′
, its 𝑞∗

′
𝑗
will be non-decreasing according to the K.K.T

conditions of (P3). Then, the ED price will decrease, i.e., 𝜆
′
< 𝜆 and

for generator 𝑖 , its 𝜕𝐼
𝜆 (𝑞𝑖 ,𝑣𝑖 ,𝛼𝑖 )
𝜕𝑞𝑖

will be increasing according to Eq.
(41). According to Eq. (40), 𝑞∗

′
𝑖
is non-decreasing.

Now we discuss the cases when 𝜇 increases. We also consider
four cases.

1) Assume 𝛼𝑖 < 𝜆.
Thenwe find that ED price will not increase. If the price increases,

for generator 𝑗 with 𝛼 𝑗 ≥ 𝜆
′
, its allocation will not increase. Pro-

vided the price increasing, we need more demand to satisfy when
the allocation does not decrease for 𝛼 𝑗 ≤ 𝜆

′
, which contradicts with

our demand constraints in Eqs. (5).
(1.a) Assume 𝛼𝑖 < 𝜆

′
. For generator 𝑗 whose 𝛼 𝑗 < 𝛼𝑖 , its

𝜕𝐼𝜆 (𝑞 𝑗 ,𝑣𝑗 ,𝛼 𝑗 )
𝜕𝑞 𝑗

does not change but 𝜇 increases. Therefore, its 𝑞∗
′
𝑗

will not increase but the demand could also be satisfied and 𝑑 −∑
𝛼 𝑗<𝜆

′ 𝐵 𝑗 increases. Then 𝑞∗
′
𝑖
will increase.

(1.b)We also point out the impossibility of 𝜆
′ ≤ 𝛼𝑖 . If it holds, for

generator 𝑗 whose 𝛼 𝑗 < 𝜆
′
, its 𝜕𝐼

𝜆 (𝑞 𝑗 ,𝑣𝑗 ,𝛼 𝑗 )
𝜕𝑞 𝑗

will not change but 𝜇
increases and the certificate quantity will decrease and the demand
could not be satisfied.

2) Assume 𝛼𝑖 ≥ 𝜆.
We could make similar discussion as above that ED price will

not decrease. Otherwise, for generator 𝑗 with 𝛼 𝑗 < 𝜆
′
, its allocation

will not increase, which leads to the demand unsatisfied without
the generation at level 𝜆

′
.

(2.a)Assume 𝜆
′ ≤ 𝛼𝑖 . Then for the other generator 𝑗 ,

𝜕𝐼𝜆 (𝑞 𝑗 ,𝑣𝑗 ,𝛼 𝑗 )
𝜕𝑞 𝑗

will not increase. According to Eq. (40), we could show when 𝜇 in-
creases, its allocation will decrease and 𝑞∗

𝑖
will increase.

(2.b) We also show that 𝛼𝑖 < 𝜆
′
is impossible. If it holds, we

could derive for generator 𝑗 whose 𝛼 𝑗 ≥ 𝜆
′
, its allocation will

decrease and the total allocation for generator 𝑗 whose 𝛼 𝑗 < 𝜆
′
will

increase, which is higher than the original allocation for generator
𝑗 whose 𝛼 𝑗 < 𝜆. Thus, the demand could be over satisfied, showing
𝜆
′
could not be such high. Therefore, the monotonicity holds when

𝑞∗
𝑖
(𝑣𝑖 , 𝑣−𝑖 ) < 𝐺𝑖 − 𝐵𝑖 .
We discuss the last scene when 𝑞∗

𝑖
(𝑣𝑖 , 𝑣−𝑖 ) = 𝐺𝑖 − 𝐵𝑖 . We need

to show if 𝑣𝑖 increases, 𝜆 could not change in this case because
we could not allocate more for generator 𝑖 and the allocation now
satisfies K.K.T conditions with higher 𝜏𝑖 . Hence, the 𝑞∗𝑖 could not
change in this case if 𝑣𝑖 increases and the other generator’s alloca-
tion will not change as well. We also show that the monotonicity
holds when 𝑞∗

𝑖
(𝑣𝑖 , 𝑣−𝑖 ) = 𝐺𝑖 − 𝐵𝑖 .

As shown above, 𝜆 should be unique and monotonicity for the
problem (P3) also holds, which implies that our mechanism could
also perform well in the limited capacity cases. ■

D PROOF FOR THEOREM 4
To prove the theorem, we first need to construct an auxiliary distri-
bution to conduct discretization.

We first construct a finite support for each [𝑣𝑖 , 𝑣𝑖 ] by the interval
size of 𝜁 , yielding {𝑣𝑖 , 𝑣𝑖 + 𝜁 , ..., 𝑣𝑖 } with the size of (𝑣𝑖 − 𝑣𝑖 )𝜁 .

We construct a discrete distribution by rounding the values from
the distribution 𝐹𝑖 to the closest multiple of 𝜁 that is higher than the
original value for 𝛼𝑖 < 𝜆, and lower than original value otherwise.
Then we denote the new distribution as 𝐹

′
𝑖
.

Now we introduce Lemma 2 to measure the error induced by the
discretization:
Lemma 2 For distribution 𝐹

′
, we have

𝑂𝑃𝑇 (𝐹
′
) ≥ 𝑂𝑃𝑇 (𝐹 ) − 𝑜 (𝜁 ), (52)

where𝑂𝑃𝑇 (𝐹 ) denotes the optimal auction revenue under distribu-
tion 𝐹 and the constant in 𝜁 is 𝑁𝐿1𝑄 + 𝑁𝐵1𝐿2𝑄 + 𝑁𝐿3𝐵2 in which
𝐿1, 𝐿2, 𝐿3 are Lipschitz constants and 𝐵1, 𝐵2 are the upper bounds
for the virtual value function and the hazard rate function.

With Lemma 2, we transfer the original distribution to a simpler
discrete distribution, allowing us to further construct the relation-
ship between this new discrete and empirical distribution to com-
plete the proof. Appendix E provides more details about the proof
for Lemma 2.

Moreover, we need to utilize Theorem 1 in [25]. Lemma 3 intro-
duces this theorem.
Lemma 3 (Theorem 1 in [25]): For any distribution 𝐹

′
on a finite

set v such that |𝑣𝑖 | ≤ 𝜅 for all 1 ≤ 𝑖 ≤ 𝑁 , suppose for some
sufficiently large constant𝐶2 > 0, the number of samples is at least
𝐶2 · 𝑁𝑘𝜖2 𝑙𝑜𝑔

1
𝛿
, then with probability 1 − 𝛿 , for any v → [0, 1], we

have
|ℎ(𝐹 ) − ℎ(𝐸) | ≤ 𝜖, (53)

where 𝐸 is the empirical distribution defined previously.
This allows us to map the auction results onto [0, 1] with con-

stant 𝐶1, yielding that

𝑂𝑃𝑇H (𝐹 ) − 𝑁𝐿1𝑄 + 𝑁𝐵1𝐿2𝑄 + 𝑁𝐿3𝐵2
𝐶1

𝜁 ≤ 𝑂𝑃𝑇H (𝐹
′
) (54)

According to Lemma 3, denoting the sample number by𝑚, we
know that

|ℎ(𝐹
′
) − ℎ(𝐸) | ≤

√︂
𝐶2 ·

𝑁𝜅

𝑚
𝑙𝑜𝑔

1
𝛿
, (55)

with probability 1 − 𝛿 .
In addition, 𝜅 = max𝑖

𝑣𝑖−𝑣𝑖
𝜁

=
𝐶3
𝜁
. Thus, the standard manipula-

tion yields that

𝑂𝑃𝑇H (𝐹 ) − 𝑁𝐿1𝑄 + 𝑁𝐵1𝐿2𝑄 + 𝑁𝐿3𝐵2
𝐶1

𝜁

≤ 𝑂𝑃𝑇H (𝐹
′
)

≤ 𝑂𝑃𝑇H (𝐸) +
√︄
𝐶2 ·

𝑁𝐶3
𝑚𝜁

𝑙𝑜𝑔
1
𝛿

(56)
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Furthermore, Cauchy–Schwarz inequality [31] indicates that
𝑂𝑃𝑇H (𝐸) ≤𝑂𝑃𝑇H (𝐹 )

− 1
3

(
(𝑁𝐿1𝑄 + 𝑁𝐵1𝐿2𝑄 + 𝑁𝐿3𝐵2)𝐶2𝐶3𝑁

4𝐶1𝑚
𝑙𝑜𝑔

1
𝛿

) 1
3
,

where we set

𝜁 =

(
𝑁𝐶2𝐶3𝐶2

1
4𝑚(𝑁𝐿1𝑄 + 𝑁𝐵1𝐿2𝑄 + 𝑁𝐿3𝐵2)2

𝑙𝑜𝑔
1
𝛿

) 1
3

. (57)

We observe that if the number of samples becomes larger, we could
take higher resolution to contain the approximate error.

Thus the sample complexity of our problem is 𝑂 ( 𝑁 2

𝜖3
𝑙𝑜𝑔 1

𝛿
). ■

E PROOF FOR LEMMA 2
First let𝑀 be the optimal mechanism with respect to 𝐹 , which is
the auction designed in Algorithm 1. Then, we construct a quantile
𝜉𝑖 for each 𝑣𝑖 . 𝑞𝑖 satisfies 𝑣𝑖 (𝜉𝑖 ) = inf{𝑣 : 𝐹𝑖 (𝑣) ≥ 𝜉𝑖 } for a certain
distribution 𝐹𝑖 . If we know 𝑣 , let 𝑙𝑖 (𝑣𝑖 ) = sup𝑣<𝑣𝑖 𝐹𝑖 (𝑣) and 𝑙𝑖 (𝑣𝑖 ) =
𝐹𝑖 (𝑣𝑖 ). 𝜉𝑖 is uniformly sampled from [𝑙𝑖 (𝑣𝑖 ), 𝑙𝑖 (𝑣𝑖 )]. After deriving
the mapping from 𝑣 to 𝜉 , we construct a mechanism 𝑀

′
for the

distribution 𝐹
′
as follows:

• Given a rounded value v
′
, we map it to get its quantile 𝜉 for

each coordinate based on the distribution 𝐹
′
.

• Let v
′′
be the value vector that corresponds to 𝜉 with respect

to the distribution 𝐹 .
• Use the mechanism𝑀 with the value vector v

′′
to conduct

the allocation.
The allocation is monotone for v

′
, and the allocation rule in

Lemma 1 guarantees the existence of a payment rule that makes
𝑀

′
truthful.
We further couple all the randomness by sampling the quantiles

𝜉 . Given any 𝜉 , we know 𝑀
′
and𝑀 return the same allocation. For

the payment, we know that 𝜌𝑖 (𝑣𝑖 (𝜉𝑖 )) and 𝜌𝑖 (𝑣
′
𝑖
(𝜉𝑖 )) are the same.

Also, the rounding process leads to a difference for value by at most
𝜁 , and we only need to know how this difference influences the
final revenue.

We focus on the characteristics of functionΨ(𝑞, 𝑣) with respect to
𝑣 . We derive 𝜕𝑟 (𝑞,𝑣)

𝜕𝑣 > 0 and 𝜕2𝑟 (𝑞,𝑣)
𝜕𝑣2

≤ 0 from our assumptions. It
shows that Ψ(𝑞, 𝑣) satisfies Lipschitz continuity and the parameter
is denoted by 𝐿1. Also,

𝜕Ψ(𝑞,𝑣)
𝜕𝑣 satisfies Lipschitz continuity and

the parameter is denoted by 𝐿2.
We express the optimization problem (P4) with values v

′
as

follows:
(P4) max

𝑞𝑖

∑︁𝑁

𝑖=1
𝐼𝜆 (𝑞𝑖 , 𝑣

′
𝑖 , 𝛼𝑖 )

𝑠 .𝑡 .
∑︁𝑁

𝑖=1
𝑞𝑖 ≤ 𝑄

(58)

Lipschitz continuity yields the following inequalities:

Ψ(𝑞, 𝑣) ≥ Ψ(𝑞, 𝑣
′
) − 𝐿1𝜁𝑄 (59)

1
𝜌 (𝑣) ≤ 1

𝜌 (𝑣 ′)
+ 𝐿3𝜁 (60)

𝜕Ψ(𝑞, 𝑣)
𝜕𝑣

≤ 𝜕Ψ(𝑞, 𝑣 ′)
𝜕𝑣

+ 𝐿2𝜁𝑄 (61)

Note that we know 𝜕Ψ(𝑞,𝑣)
𝜕𝑣 is positive and it is bounded by 𝐵2.

We also have 1
𝜌𝑖 (𝑣𝑖 ) is positive and it is uniformly bounded by 𝐵1.

Hence, ∑︁𝑁

𝑖=1
𝐼𝜆 (𝑞, 𝑣

′
, 𝛼𝑖 )

≥
∑︁𝑁

𝑖=1
𝐼𝜆 (𝑞, 𝑣, 𝛼𝑖 ) − 𝑁𝐿1𝜁𝑄 − 𝑁𝐵1𝐿2𝜁𝑄

− 𝑁𝐿3𝐵2𝜁 + 𝑁𝐵1𝐵2𝐿2𝐿3𝜁 2𝑄

≥
∑︁𝑁

𝑖=1
𝐼𝜆 (𝑞, 𝑣, 𝛼𝑖 ) − 𝑁𝐿1𝜁𝑄 − 𝑁𝐵1𝐿2𝜁𝑄

− 𝑁𝐿3𝐵2𝜁 ,

(62)

which corresponds to the optimization problem (P2).
Remark: There are some extreme scenarios, which change 𝜆 and
the optimal revenue. That is, values after rounding for the genera-
tors that take part in the generation rise while others go down. Then
we could derive that the allocation for generator 𝑗 whose 𝛼 𝑗 < 𝜆

could not decrease. A decrease in allocation means that allocation
for other generator 𝑖 with 𝛼𝑖 ≥ 𝜆 increases. Since other 𝜕𝐼

𝜆 (𝑞𝑖 ,𝑣𝑖 ,𝛼𝑖 )
𝜕𝑞𝑖

decreases, 𝜇 decreases. For generator 𝑗 , its allocation needs to be
raised where contradiction occurs. By rounding, our mechanism sat-
isfies more demand than original values, which shows the ED price
should be lower. Since we have discrete, limited price decreasing
choices, the number of breaking points that 𝜕𝑞 𝑗𝜕𝑣𝑗

cannot be bounded
are limited. The occurrence of the price change in these breaking
points has a small probability (almost zero). For other points, 𝜕𝑞 𝑗𝜕𝑣𝑗

is
non-negative and bounded. If 𝜁 becomes small enough, the change
of allocation is small enough and further makes Eq. (62) hold. Here,
we assume that 𝜖 is small enough, and we could divide the interval
with a small enough 𝜁 .

We denote the optimal solution for (P4) as OPT(P4), we know
𝑂𝑃𝑇 (𝐹 ) − 𝑁𝐿1𝜁𝑄 − 𝑁𝐵1𝐿2𝜁𝑄 − 𝑁𝐿3𝐵2𝜁

≤𝑂𝑃𝑇 (𝑃4) ≤ 𝑂𝑃𝑇 (𝐹
′
) .

(63)

■

F EXTENSION FOR MORE REALISTIC
SETTINGS

While in the main content, we consider a simplified setting, this set-
ting is not that restrictive as most of the time, the power grid is not
congested. Hence, the electricity pool model is already rather rep-
resentative in practice. Nonetheless, we would like to provide our
preliminary results on generalizing our framework to the network
constrained setting with certain assumption. Denote the cost func-
tion for each generator 𝑖 by 𝑐𝑖 (𝑔𝑖 ). Then, the network constrained
ED problem is as follows:

(P5) min
∑︁𝑁

𝑖=1
𝑐𝑖 (𝑔𝑖 )

𝑠 .𝑡 . − ℎ𝑙 ≤
∑︁𝑁

𝑖=1
𝐻𝑙𝑖𝑔𝑖 − 𝐻𝑙𝑖𝑑𝑖 ≤ ℎ𝑙 ,∀𝑙∑︁𝑁

𝑖=1
𝑔𝑖 =

∑︁𝑁

𝑖=1
𝑑𝑖

0 ≤ 𝑔𝑖 ≤ 𝐵𝑖 + 𝑞𝑖 ∀𝑖,

(64)

where𝐻𝑔
𝑙𝑖
is (𝑙, 𝑖)th element in the shift factor matrix to characterize

the transmission constraints. To guarantee that our extension also
satisfies IC, IR and optimality, we need to identify the relationship
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between the valuation 𝜙𝑖 and the actual revenue in ED process. We
first denote 𝛼𝑚

𝑖
the marginal cost when 𝑔𝑖 = 𝐵𝑖 . We assume 𝛼𝑚

𝑖
’s

are ordered ascendingly. Then we make the following assumption:
A10: For the ordered maximal marginal cost 𝛼𝑚

𝑖
, we assume the

value for ordered generator satisfies 𝑣𝑖 ≤ 𝑣𝑖+1, for all 𝑖 = 1, ..., 𝑁 − 1.
We further assume that function 𝜙 satisfies that for each 𝑣𝑖 and 𝑣𝑖+1,
it holds:

𝜕𝜓 (𝑄, 𝑣𝑖+1)
𝜕𝑞

− 1
𝜌𝑖 (𝑣𝑖+1)

𝜕𝜓 (𝑄, 𝑣𝑖+1)
𝜕𝑞

− 𝜕𝜓 (0, 𝑣𝑖 )
𝜕𝑞

− 1
𝜌𝑖 (𝑣𝑖 )

𝜕𝜓 (0, 𝑣𝑖 )
𝜕𝑞

≥ 𝛼𝑚𝑁 .
(65)

Remark: This assumption relates the valuation in the auction
with the cost in the ED process. The first condition in A10 can
hold in real time since most of high cost generators are environ-
mental friendly and therefore they also have high willingness to
pay for the green certificate. The second condition in A10 specifies
that the main incentive to buy the certificate is to maximize the
generator’s own valuation instead of deriving more certificates for
generation. With this technique assumption, we can extend our
mechanism to handle (P5). We denote the optimal solution for (P5)

by 𝑐∗ (𝑞1, ..., 𝑞𝑁 ) as a function of {𝑞𝑖 , 𝑖 = 1, ...𝑁 }, the payment for
ED process under the optimal solution to (P5) by Λ∗

𝑖
(𝑞1, ..., 𝑞𝑁 ), and

the optimal generation by 𝑔∗
𝑖
(𝑞1, ..., 𝑞𝑁 ), for all 𝑖 = 1, ..., 𝑁 . These

allow us to adjust the decision for auction allocation, which is in
corresponding to (P2):

(P6) max
𝑞𝑖

∑︁𝑁

𝑖=1
Ψ(𝑞𝑖 , 𝑣𝑖 ) −

1
𝜌𝑖 (𝑣𝑖 )

𝜕Ψ(𝑞𝑖 , 𝑣𝑖 )
𝜕𝑣𝑖

+ 𝑐∗ (𝑞1, ..., 𝑞𝑁 )

𝑠 .𝑡 .
∑︁𝑁

𝑖=1
𝑞𝑖 ≤ 𝑄

(66)
Thus, we can design the payment as follows:

𝑝𝑖 = Ψ(𝑞∗𝑖 , 𝑣𝑖 ) −
1

𝜌𝑖 (𝑣𝑖 )
𝜕Ψ(𝑞∗

𝑖
, 𝑣𝑖 )

𝜕𝑣𝑖
+ Λ∗

𝑖 (𝑞1, ..., 𝑞𝑁 )

− Λ∗
𝑖 (0, ..., 0) − 𝑐𝑖 (𝑔

∗
𝑖 (𝑞1, ..., 𝑞𝑁 )) + 𝑐𝑖 (𝑔

∗
𝑖 (0, ..., 0)) .

(67)

Under Assumption A1-A6 and A10, we can further prove the
IC, IR and optimal for this mechanism. The proof follows the same
routine as the proof to Therorem 2. The only difference is that when
examining the monotonicity, we need to embed Assumption A10
to derive the result.
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